Showing posts with label their. Show all posts
Showing posts with label their. Show all posts

Thursday, 23 February 2012

Innate Immune Pathways Triggered by Listeria monocytogenes and Their Role in the Induction of Cell-Mediated Immunity.

Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, USA.

Acquired cell-mediated immunity to Listeria monocytogenes is induced by infection with live, replicating bacteria that grow in the host cell cytosol, whereas killed bacteria, or those trapped in a phagosome, fail to induce protective immunity. In this chapter, we focus on how L. monocytogenes is sensed by the innate immune system, with the presumption that innate immunity affects the development of acquired immunity. Infection by L. monocytogenes induces three innate immune pathways: an MyD88-dependent pathway emanating from a phagosome leading to expression of inflammatory cytokines; a STING/IRF3-dependent pathway emanating from the cytosol leading to the expression of IFN-ß and coregulated genes; and very low levels of a Caspase-1-dependent, AIM2-dependent inflammasome pathway resulting in proteolytic activation and secretion of IL-1ß and IL-18 and pyroptotic cell death. Using a combination of genetics and biochemistry, we identified the listerial ligand that activates the STING/IRF3 pathway as secreted cyclic diadenosine monophosphate, a newly discovered conserved bacterial signaling molecule. We also identified L. monocytogenes mutants that caused robust inflammasome activation due to bacteriolysis in the cytosol, release of DNA, and activation of the AIM2 inflammasome. A strain was constructed that ectopically expressed and secreted a fusion protein containing Legionella pneumophila flagellin that robustly activated the Nlrc4-dependent inflammasome and was highly attenuated in mice, also in an Nlrc4-dependent manner. Surprisingly, this strain was a poor inducer of adaptive immunity, suggesting that inflammasome activation is not necessary to induce cell-mediated immunity and may even be detrimental under some conditions. To the best of our knowledge, no single innate immune pathway is necessary to mount a robust acquired immune response to L. monocytogenes infection.

Copyright © 2012 Elsevier Inc. All rights reserved.


View the original article here

Thursday, 8 December 2011

Biofilms in drinking water and their role as reservoir for pathogens.

Biofilm Centre, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany.

Most microorganisms on Earth live in various aggregates which are generally termed "biofilms". They are ubiquitous and represent the most successful form of life. They are the active agent in biofiltration and the carriers of the self-cleaning potential in soils, sediments and water. They are also common on surfaces in technical systems where they sometimes cause biofouling. In recent years it has become evident that biofilms in drinking water distribution networks can become transient or long-term habitats for hygienically relevant microorganisms. Important categories of these organisms include faecal indicator bacteria (e.g., Escherichia coli), obligate bacterial pathogens of faecal origin (e.g., Campylobacter spp.) opportunistic bacteria of environmental origin (e.g., Legionella spp., Pseudomonas aeruginosa), enteric viruses (e.g., adenoviruses, rotaviruses, noroviruses) and parasitic protozoa (e.g., Cryptosporidium parvum). These organisms can attach to preexisting biofilms, where they become integrated and survive for days to weeks or even longer, depending on the biology and ecology of the organism and the environmental conditions. There are indications that at least a part of the biofilm populations of pathogenic bacteria persists in a viable but non-culturable (VBNC) state and remains unnoticed by the methods appointed to their detection. Thus, biofilms in drinking water systems can serve as an environmental reservoir for pathogenic microorganisms and represent a potential source of water contamination, resulting in a potential health risk for humans if left unnoticed.

Copyright © 2011 Elsevier GmbH. All rights reserved.


View the original article here